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A CLASS OF MOTIONS OF A TOP IN THE GO~YACHEV-CHAPLYGIN CASE* 

A.I. DCKSHHVICH 

A solution of the Euler-Poisson equations is studied for the Goryachev- 
Chaplygin case /l/ under the condition when the ultraelliptic integrals 
degenerate to elliptic /2/. A solution is constructed for a class of 
motions in which both quantities , u and v, brought in by Chaplygin, vary 
with time, but one of them tends asymptoticalLy to a constant when the 
time increases without limit. The dependence of the Euler-Poisson 
variables on time is expressed in terms of elliptic functions and an 
elliptic integral of the third kind. Fairly simple approximate formulas 
are given for determining all six variables sought. 

1. Equations of motion. We will use the Goryachev-Chaplygin conditions and take 
the Euler-Poisson equations in traditional form /l/ (a dot denotes differentiation with 
respect to time) 

4p' = 3qr, 4q' = -3tp - av=, r' = ay' (1.i) 
‘f‘ =5 '7' - Qy"* y" =a py" - p$', y" = qy - py' 

If the area conetant is zero, the above system admits of four algebraic integrals 

4(p~+$)++=--2ay=k,y=+~ fy"P=l (f.2) 
4(py+ qy') -?- ry" =il 0. r&J*+ 42) i- WY" = g 

We introduce two auxiliary variables I,U so that 

L-f- v = r. Y" = -4 (p* f q? ff.3 
The following differential equations describe how these quantities vary With time? 

2(u-zJ)u‘= VW(u), 2(v-U)U'== I/F(y) (W 

F M = ft (4 fn (4 
fl (Irf = -4 + (k + 24 u -I- 4cr, fi (a) i= uJ i (24 - k) u - & 

System (1.4) can be written in terms of total. differentials thus 

‘tudu+ __=dt Zvddu 

m 1/F@) 
(1.5) 

Let us write (k-20)*-i- 2?.4g* = 0, or in parametric form (b is an auxiliary constant) 

k - 2~ = 36', 2g = --b* 0.Q 

Then jr fu) = fu - b)'(n -I- 2b), &id = -(u - zr) (p - na) (= -aRII) where all three roots CL*. 0-9 % are 

real and ox <c+<O<aS, --2b<a,. It follows that the polynomial F(u) has a multiple root 

F (U) = (11 - @'R(U). R(u)=(u+2b)f,(u) (1.7) 

Let us describe the type of set in which the variables P,V vary. We shall assume that 

g.s:O. since when g-0 the solution is known /3, 4/. Then p*+f+O and hence by virtue of 

(1.3), ttv=+o. We can assume without loss of generality that u>O,u<O.b<O. Bearing this in 

mind, we obtain O<--2&crtr~zr, (i.8) 

Thu& the quantity u varies on the interval (1.8). The set of variations is more com- 

plicated for the second variable V. Depending on the initial data, three versions are 
possible 1) CC, < U< b < 0, 2) b < ~<:a?, 3) v = 6 = con&. The last version is relatively simple and 

*~rikl.~a~em.~ekhan..48,6,1O3Ff-1042,1984 



its solution is already known /2/ 

4p = (2b - r) f, 4 @* + s*)= b (b - r), b (r + b) = -I$* (i.9) 
2~ (v + 1) = (r + b) [r - Zb), by’ - Zqy 

4 (r')* = (r + b) [4ti (r - b) - (r + b) (r - 2b)Y 

In the general case when the quantity u is variable, we know /2/ that the motion approaches 

its limit mode asymptotically, and the mode is determined by (1.9). 

2. Constructing the solution. Using conditions (1.6) and relation (1.71, we can 
reduce the equations (1.4), (1.5) to the form 

2(a--)u’=(u-b)f/R, 2(u-u)v’=(u-bb)l/v(v) t2.i) 

du 
+ 

du 

(u - b) V/R (v--b)m =’ 
(z.2) 

Let us carry out the bilinear transformation of the variables U, v 

where m, n are constants, 24m = R” (-2b). 4n = R’ (-2b). and the prime denotes a derivative. In 
the new variables Eqs. (2.2) take the form &,rzo are arbitrary constants) 

B (I) = 423 - .w - RP, I1 = $ + %ot q = 

Carrying out all elementary algebra, we obtain 

systems of this type also arises in the study of the Kowalewska case /5-T/. Let us 
construct the solution of (2.4) in a form suitable for applications. We introduce new variables 

111, b and a constant OL such that 

zl=Pbd, zo=Pbd, b,=P(a) (2.5) 

where P(U) is an elliptic Weierstrass function with invariants g,,gll. Integrating the system 
obtained from (2.41 we carry out the substitution (2.5) and obtain 

This gives us the formal solution. The final relations (2.6) determine the total solution 
of the initial system (2.1) in implicit form. However, we can write the variables U,D in 
explicite form, where their final form is represented by simple analytic functions of time. 
With this aim we shall use, for the integrals f(u), the theorem of addition of argiiments /a/ 
written in the form 

(2.7) 

where n(u) is the Weierstrass entire function. 
Using relations (2.61 we can obtain the quantity cp as an explicit function of time 

9‘ = P' (a) Tz - I (Q (2.8) 

Further, the left part of (2.7) can be written in the form 

where So= u, (u)/o(u) (v= 1, 2, 3) are elliptic functions and equation (2.7) is solved for the 

product sV (ul) 8,. (~~1. This yields 

s,. (11,) JI (%) = L, (1) (2.9) 

L,. (t) = s\. (a) 
S,(TI - Q) eT - q(11+ a) 

I+ 8 
, ~=1,2,3 

The elliptic functions So (v= 1, 2,3) are related to the Weierstrass function P(U) very 
simply: P (U) - s,e (U) _t Cl = I.2 (u) - _ e 2 = So*+ e3 where Cl. e2r e3 

4:s - g+ 
are roots of the polynomial cp(5)~ 

- g3 = 4 (Z - e,) (2 - e:) (5 - e,i. Taking into account the relations (2.5) we obtain - s,(u:)= vz,,therefore we can write Eqs.(2.9) in the form 
Q(4) = 

1/ ;1 - e\r 

1/(21--~.l(it-ey)=L~((t) (1.10) 
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Relations (2.10) give the required answer. Using these formulas we can find the symmetric 
functions %+s,,++ as linear combinations of known functions of time L,(t), i.e. as unique 
analytic functions of time , and then construct the quantities +,% themselves. 

3. Computation of the Euler-Poisson variables. Having obtained z,,z, from 
formuLas (2.3), we find the Chaplygin II,= variables. Using the four algebraic integrals 
(1.2) and relations (1.3), we can find the Euler-Poisson variables p, q, r,y,y’,y”. The final 
formulas however are very cumbersome. 

Let us turn our attention to the asymptotic form of the motion. We can prove it easily 
now. Indeed, differentiating (2.8) we obtain 

It can be confirmed that dqidt> co>0 where o is a constant t and in view of this the 
quantity 4p is a monotonic function of time. As t-- 00, we shall have e+l- 0, Lv (t)- tv (a& a) 
where the sign preceding the copstant a depends on the sign of cp. The indicated property of 
the motion follows from this. 

In this COnneCtiOn we Can write the variables sought in the form of power series in terms 
of the small variable quantity *-ItpI with periodic coefficients. 

Let us COnStrUCt an approximate expressions for the Euler-Poisson variables, using for 
simplicity the equations of motion (1.l.) directly. The limit motion is realized under an 
additional. condition, provided that, u(O)== b at the initial instant. Let us expand the sol- 
ution in series in powers of the small parameter p = v (0)/b - 1 

p~pO+~pf+-~.,P~~~+fliPl+...r r=r,+w1+.*. (3.1) 
q-+Z.OLB+lULl+.... av'=iL+k&+... nY=Y*+CA+.-. 

The principal terms PO. pa. . . . . y. of these series characterize the limit motion, which is 
described, in accordance with (1.91, by the relations 

4~~,==(2b--a)~o, 4(~$+40”)=b(b-r& ab(rp+b)=-W 
2 6% i- .) = (PO + 4) 0.0 - 2b)v b& = 2m’o, vz’ = --oqo 

(3.2) 

Substituting series 13.1) into (1.11, (1.2) and comparing terms of the first-order of 
smallness, we obtain 

4Pl = 3 kvl f wo), &l' = -3 (kP1 I- wo) - Yi* r,’ =I a (3.3) 
011' = Bern -I- &r0 - %v0Q1 - Y140. I%' = YPPX + y1p6- a0rl - a,rO- 
Ye' = aoql -I- al90 - BOPI - Bso 

Let us first find the Chapfygin variables 

u=ua+j&u,+..,, V==.@+-~D~+-... (3.4) 

substituting series (3.4) into (2.1) and equating first the principal terms, and then 
terms of the second brder of smallness, we obtain 

2lb@.=)TRh vu'=0 (3.5) 

0% - vof us' + 0% - %I =o‘ = f' (uof ut (3.6) 

(@ -~)~~+(~1-~1)~~ -~'(w~)u~, zf((uf = (a- Itf tiXG 

From (3.5) it follows that v, = const = b and the variables u. is a periodic function of 

time. 
Let us now turn to system (3.6). The second equation of this system yields ",== c.& 

where Ca is an arbitrary constant, 1'~ l/(4 - uo), 1 =f’(b) = + m= 6fg It can be shown that 

r = ql‘ and hence Y, = LC,sQ where Ct is an arbitrary constant. Knowing the dependence of u 

on time we obtain, from the first equation of (3.61, 

u, = uo’ (C, - c,c”) (3.7) 

where C, is the second integration constant. 
Thus, having obtained the quantities u~.L'~,u,,v, we can use the xelations (1 .I), (3.3) t0 

compute the variables p,, gl, r,. a,, B,, vi. This yields 

P, = eo'N + &TO+ i&e", 4x=4o.A' I;;; (--lpu i=&enp (3.3) 

I‘, := rU'fi f C,G, 
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ON A MODIFICATION OF THE A~~~GI~G METHOD FOR SEEKING HIGHER APPROXIMATIONS* 

V.V. STRYGIN 

Systems in the N.N. Bogolyubov standard form as well as systems with rapid 
phases are considered. It is proposed to seek the solution in the form 
of an asymptotic series in a small parameter with coefficients representable 
in the form of the sum of two functions. The first depends on slow time 
and is found as the solution of a simpler equation in a finite segment. 
The second is a trigonometric polynomial of the time (or the angular 
displacements~ with coefficients which depend on the slow time (it is 
found in an explicit manner). It is convenient to use the results in 
solving certain problems in celestial mechanics. 

Utilization of the Bogolyubov-Mitropol'skii-Velosov averaging method fl, 2/ in calculat- 
ing high approximations of a solution with fixed initial condition can be made complicated 
because of the awkwardness of appropriate ,manipulations. A modification is proposed below 
for the method which is based on ideas utilized in the theory of singularly perturbed equa- 
tions /3, 4/. 

Let Rn be an n-dimensional Euclidean space, and let D be a bounded domain in R".We assume 
that a function X&z) with values in Rn ,all of whose derivatives with respect to 2 to the 
(N+ I)-th order are continuous, is defined in fO.00) xf). 

polynomial in t. 
Let X @,zf be a trigonometric 

The Cauchy problem 
dz/dt = eX ft, z), 2 (0) = a E I), t E IO, Tie] 0) 

is considered, where e is a small positive parameter. 
of this problem in the form 

We will seek an approximate solution 

Here 0: aretrigonometric polynomials in t. Formally substituting (2) into (l), we have 

(3) 

We shall try to satisfy this equation for all thg[O, Tt and trf0. oe). We set ~~zm0. 
We shall later denote the mean value of the function X with respect to t by X. 
x+x'. Evidentlyx'has a zero mean in t. 

Then X= 
Furthermore 


